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Abstract In this paper, a mathematical model with the impulsive state feedback
control is proposed for turbidostat system. The sufficient conditions of existence of
order-1 and order-2 periodic solutions are obtained by the existence criteria of peri-
odic solution of a general planar impulsive autonomous system. It is shown that the
system either tends to a stable state or has a periodic solution, which depends on the
feedback state and the initial concentration of microorganism and substrate. Finally,
some discussions and numerical simulations are given.

Keywords Turbidostat · Impulsive state feedback control · Period-1 solution ·
Period-2 solution

1 Introduction

A chemostat is a piece of laboratory apparatus frequently used for culturing
microorganisms. It can be used for representing all kinds of microorganism systems
such as lake, waste-water treatment and reaches for commercial production of the
advantage of being easily implementable in a laboratory. Hence the model has been
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Fig. 1 1. Reservior of sterile
Medium 2. Valve controlling
flow of medium 3. Outlet for
spent medium 4. Photo cell 5.
Light source 6. Turbidostat

subject to extensive tests and experiments. In order to investigate the dynamics of the
microorganism growth in a chemostat, many papers have investigated the mathematical
models on the culture of the microorganisms. For example, mathematical [1–6] and
experimental [7–9] models exhibit the competitive exclusion principle only one spe-
cies survives. Several modifications of the chemostat have been made to ensure the
coexistence of species on a single nutrient [7,9–11].

There are many aspects to be considered in order to achieve higher biomass concen-
tration and productivity. With the growth of the microorganism and its concentration
increasing in the chemostat, the effect of inhibition between the production and other
negative effect will occur when the concentration of the microorganism reaches a crit-
ical value. Therefore, how to control the microorganism concentration is important to
decrease the inhibition of the microorganism concentration. For the purpose of con-
tinuously culturing the microorganism and decreasing the inhibition effect or other
negative effects, it is necessary to keep the microorganism concentration lower than
the critical level. So the chemostat with the feedback control of the dilution rate, which
is often referred to as a turbidostat by bio-engineers and biologists [12], is established.
In this sense, the turbidostat is actually a continuous culture system of the microor-
ganism which includes an optical sensing device (optoelectronic device) by which the
concentration of the microorganism in the growth vessel and the dilution rate can be
controlled(see Fig. 1). In the turbidostat, an optical sensor measures the turbidity of
the fluid, which is used to control the dilution rate [12]. If the culture density becomes
too high the dilution rate increases, on the contrary if it becomes too low the dilution
rate decreases.

There are some papers investigating the mathematical models on the turbidostat by
means of feedback control of the dilution rate [10–12]. The coexistence of two spe-
cies in the turbidostat was shown numerically by Flegr [10], and later analytically by
De Leenheer and Smith [11].

Recently, theories of impulsive differential equations have been introduced into
population dynamics. Especially, impulsive state feedback control strategy is used
widely in real life problems [13–15]. For example, Yang [16] presents models of
impulsive electronic devices, which are ideal models of nanoelectronic devices, and
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studies some examples of nanoelectronic circuits consisting of driven single-electron
tunneling junctions. To make the rocket transfer to a higher energy orbit, increments
in velocity are given impulsively when the rocket reaches the position of peri-apse and
apo-apse [17].

In real life, we use the impulsive state feedback control to investigate the micro-
organism culture, instead of impulsive differential equations with the fixed moment
because the control measures are taken only the microorganism concentration reaches
a threshold value. Based on the above ideas [10–17], we will introduce the impulsive
state feedback control into the turbidostat.

An outline of this paper is as follows: an autonomous system with the impulsive
state feedback strategy is introduced into the turbidostat in Sect. 2. In addition, some
definitions and existence criteria of the periodic solution for a general planar impul-
sive autonomous system are also given in Sect. 2. In Sect. 3, the qualitative analysis is
given and the existences of order one and order two periodic solutions are investigated.
Finally, we give numerical simulations and a brief discussion.

2 Model description and preliminaries

The basic deterministic models of microbial growth in the continuous culture apparatus
take the following form:

⎧
⎨

⎩

dS′
dt ′ = QS0 − QS′ − µS′x ′

δ(kx ′+S′) ,

dx ′
dt ′ = µS′x ′

kx ′+S′ − Qx ′,
(2.1)

where S′(t ′) and x ′(t ′) denote the concentration of the substrate and microorganism,
respectively at time t ′. Q is the dilution rate and S0 is the concentration of the input
substrate. µ is called the maximal specific growth rate of the microorganism. k is the
positive constant. The yield constant δ reflects that only a fraction of the nutrient of
what the species consumes, leads to new biomass.

The microorganism concentration in the culture vessel is lower than a threshold
value (a predetermined value by experiment), it is not necessary to take a control mea-
sure. While the microorganism concentration reaches the critical value which may be
detected by the optoelectronic devices, the control measure should be taken to decrease
the microorganism concentration (see Fig. 2).

The feedback approach is perhaps most natural in the lab setting. For instance,
optical sensors can be used to measure turbidity, giving a rough estimate of the con-
centrations of the species. The concentration estimate can be processed by a computer
to (online) calculate the dilution rate. The result then determines the speed of the
pump-the device that is being actuated-which supplies the reactor with fresh medium.

We introduce the impulsive state feedback control into the system (2.1). Then sys-
tem (2.1) becomes as follows:
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Fig. 2 1. Reservior of sterile
medium 2. Valve controlling
flow of medium 3. Outlet for
spent medium 4. Photo cell 5.
Light source

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS′
dt ′ = QS0 − QS′ − µS′x ′

δ(kx ′+S′) ,

dx ′
dt ′ = µS′x ′

kx ′+S′ − Qx ′,

⎫
⎬

⎭
x ′ < xh,

�S′ = −Q1S′,
�x ′ = −Q1x ′,

⎫
⎬

⎭
x ′ = xh,

S′(0) = S′
0, x ′(0) = x ′

0,

(2.2)

where �S′(t) = S′(t+) − S′(t), �x ′(t) = x ′(t+) − x ′(t). Q1 is a dimensionless
feedback coefficient due to the feedback control when the microorganism concentra-
tion x ′ reaches the critical value xh (see Fig. 2). Other parameters are the same as the
system (2.1).

The variables in the above system may be rescaled by measuring S = S′
S0 , x =

x ′
δS0 , t = Qt ′, then system (2.2) becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS
dt

= 1 − S − mSx
ax+S ,

dx
dt

= mSx
ax+S − x,

⎫
⎬

⎭
x < h,

�S = −pS
�x = −px,

}

x = h,

S(0) = S0, x(0) = x0,

(2.3)

where

m = µ

Q
, a = kδ, h = xh

δS0 , p = Q1.

In the following, we will discuss the existence of periodic solution of (2.3) by the
existence criteria of the general impulsive autonomous system. For late convenience,
we give some definitions and lemmas.

123



1228 J Math Chem (2010) 47:1224–1239

Definition 2.1 [18] An triple (X, π, R+) is said to a semi-dynamical system if X is
a metric space, R+ is the set of all non-negative reals and π : X × R+ → X is a
continuous function such that

(i) π(x, 0) = x for all x ∈ X;

(ii) π(π(π, t), s) = π(x, t + s) for all x ∈ X and t, s ∈ R+.

We denote a semi-dynamical system (X, π, R+) by (X, π). For any x ∈ X , the
function πx : R+ → X defined as πx (t) = π(x, t) is continuous and we call πx the
trajectory of x . The set C+(x) = {π(x, t)|t ∈ R+} is called the positive orbit of x . For
any subset M of X , we let M+(x) = C+(x) ∩ M − x and M−(x) = G(x) ∩ M − x,

where G(x) = ∪{G(x, t)|t ∈ R+} and G(x) = {y|π(y, t) = x} is a attainable set of
x at t ∈ R+. Finally, we set M(x) = M+(x) ∪ M−(x).

Definition 2.2 [18] An impulsive semi-dynamical system (X, π, M, I ) consists of a
semi-dynamical system (X, π) together with a nonempty closed subset M of X and a
continuous function I : M → X such that the following properties:

(i) No point x ∈ X is a limit point of M(x).

(ii) {t |G(x, t) ∩ M �= ∅} is a closed subset of R+.

We write N = I (M) = {y ∈ X |y = I (x), x ∈ M and for any x ∈ X, I (x) = x+}.
We call M the set of impulses and I the impulsive function.

Defining a function � : X → R+ ∪ {∞} as follows:

�(x) =
{∞ if M+(x) = ∅,

s if π(x, t) �∈ M for 0 < t < s and π(x, s) ∈ M,

where s is called the time without impulse of x . i.e. s is the first time when π(x, 0)

hits M .

Definition 2.3 [18] Let (X, π, M, I ) be an impulsive semi-dynamical system and
x ∈ X and x �∈ M. The trajectory of x is a function π̃x defined on subset [0, s) of R+
(s mat be ∞) to X inductively as follows:

π̃x = π̃ (̃xn−1, t), τn−1 < t < τn,

where xn is the sequence of impulse point of x , which satisfies π(x+
n−1,�(x+

n−1)) =
xn . τn is the sequence of impulsive time relative to {xn}, τn = ∑n−1

k=0 �(x+
k ).

Definition 2.4 [18] A trajectory π̃x is said to be periodic of period τ and order k if
there exist positive integers m ≥ 1 and k ≥ 1 such that k is the smallest integer for
x+

m = x+
m+k and τ = ∑m+k−1

i=m �(x+
i ).
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Consider the following general autonomous impulsive differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt = P(x, y),

dy
dt = Q(x, y),

}

(x, y) �∈ M,

�x = I1(x, y),

�y = I2(x, y),

}

(x, y) ∈ M,

(2.4)

where (x, y) ∈ R2. P, Q, I1 and I2 are all functions mapping R2 into R. M ⊂ R2 is
the set of impulse, and we assume:

(H2.1) P(x, y) and Q(x, y) are all continuous with respect to x, y ∈ R2.

(H2.2) M ⊂ R2 is a linear function, I1(x, y) and I2(x, y) are linear functions of x
and y.

For each point S(x, y) ∈ M, we define I : R2 → R2 :

I (S) = (x+, y+) ∈ R2, x+ = x + I1(x, y), y+ = y + I2(x, y).

Obviously, N = I (M) is also a linear function of R2 or a subset of a line and we
assume M ∩ N = ∅. From Definition 2.2, we know system (2.4) is an impulsive semi-
dynamical system. The following lemma gives the conditions under which system (2.4)
has a periodic solution of order one by Definition 2.4.

Lemma 2.5 [19] If system (2.4) satisfies assumptions (H2.1) and (H2.2), and there
exists a boundedly closed and simply connected region D which has the following
properties:

(i) There is no singularity in it and the boundary ∂ D is composed of three parts:
L1, L2 and L3.

(ii) L1 = D ∩ M cannot be tangent with trajectories of (2.4) except at end-points.

(iii) L2 ⊂ I (M) is a line segment which satisfies I (L1) ⊂ L2.

(iv) Trajectories with initial point in L2 ∪ L3 will enter into the interior of D, then
there must exist a periodic solution of order one in region D.

3 Existence of periodic solution of system (2.3)

Before discussing the periodic solution of system (2.3), we should consider the qual-
itative characteristic of (2.3) without the impulsive effect. Then the corresponding
system without the impulsive affection is as follows:

{
Ṡ(t) = 1 − S − mSx

ax+S ,

ẋ(t) = mSx
ax+S − x .

(3.1)
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Fig. 3 Vector graph of system (3.1) when m > 1

By simple calculation, system (3.1) has a microorganism-free equilibrium (1, 0)

and a positive equilibrium
(

a
a+m−1 , 1 − a

a+m−1

)
, a + m > 1.

Obviously, the following results about system (3.1) can be obtained.

(1) Every solution of system (3.1) tends to (1, 0) if m < 1 holds.

(2) If m > 1 holds, then (1, 0) is a saddle point, the positive equilibrium(
a

m+a−1 , 1 − a
m+a−1

)
is globally asymptotically stable node in the positive quad-

rant(S(t) > 0, x(t) > 0) and

lim
t→∞ S(t) = a

m + a − 1
, lim

t→∞ x(t) = 1 − a

m + a − 1
.

The vector graph of system (3.1) can be seen in Fig. 3. For the initial points which
satisfy x(0) < 1 − a

m+a−1 and d S
dt |(S0,x0) ≥ 0, if h > 1 − a

m+a−1 , then all the solu-

tions of system (2.3) tend to the equilibrium
(

a
m+a−1 , 1 − a

m+a−1

)
and no impulse

will occur, which indicates the microorganism concentration will not affect the micro-
organism culture. Therefore, we need not control the concentration of the microor-
ganism. In fact, anaerobic microorganisms such as anaerobic bacteria lactococcus,
an l-lactic acid bacteria and ethanol producing bacteria are unlike common aero-
bic industrial microorganisms such as yeast for ethanol fermentation and bacteria
for glutamic acid fermentation. Serious end product (L-Lactic acid) inhibition was
observed in the microorganism as described as in the previous report [20]. So we
mainly focus our attention on the case h < 1 − a

m+a−1 , x(0) < 1 − a
m+a−1 and

S(0) ≤ 1.
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Fig. 4 Existence of periodic
solution of order one when
SC < ah

m−1 and

SDM > SD > ah
m−1

3.1 Order one periodic solution

In Fig. 4, the line x = h intersects the isoclinal line dx/dt = 0 at the point
(SA, h), where SA = ah

m−1 . The impulsive set M ⊆ AB, AB = {(S, x)|x =
h, SA ≤ S ≤ 1}. The impulsive functions I1 and I2 map the impulsive set M as
N = I (M) ⊆ C D, C D = {x = (1 − p)h, (1 − p)SA ≤ S ≤ 1 − p}, where
C = (SC , (1− p)h), SC = (1− p) ah

m−1 , SD = 1− p. From the third equation of (2.3),
we know that S+ = (1 − p)S for x = h and furthermore SC = (1 − p)SA ≤ SA.

According to the value of SC and SD , we mainly discuss the following cases:

Case I: SC ≤ ah
m−1 and ah

m−1 ≤ SD ≤ SDM , where

1 − SDM − mh(1 − p)SDM

ah(1 − p) + SDM
= 0,

SDM = −(ah(1 − b) + mh(1 − p) − 1) +
√

(ah(1 − p) + mh(1 − b) − 1)2 + 4ah(1 − p)

2
.

Case II: SC < ah
m−1 and SD < ah

m−1 (Fig. 5).

Case III: SC < ah
m−1 and SD > SDM (Fig. 6).

We first discuss Case I, SC ≤ ah
m−1 and ah

m−1 ≤ SD ≤ SDM , the illustration can
be seen in Fig. 4. From the qualitative characteristic of (3.1), it is easily known that
all the trajectories of (2.3) starting from the region {x(0) > h, d S

dt |(S(0),x(0)) ≤ 0}
do not interact the line x = h and the trajectories starting from the region {x(0) <

h, d S
dt |(S(0),x(0)) ≤ 0} must interact with the segment AB.

Theorem 3.1 Suppose that m > 1, h < 1 − a
m+a−1 , SC ≤ ah

m−1 ≤ SD ≤ SDM and
x(0) < h, then system (2.3) has an order one periodic solution.
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Fig. 5 Existence of periodic
solution of order one when
SC < ah

m−1 and SD < ah
m−1

Fig. 6 Existence of periodic
solution of order one when
SC < ah

m−1 and SD > SDM

Proof In order to apply to Lemma 2.5, we construct a closed region R (see Fig. 4). We
know that d S

dt < 0, dx
dt > 0 for S = 1 and d S

dt = 0 for x = 0. Furthermore, the perpen-
dicular line S = SC = (1 − p)SA interacts the axis x = 0 at the point G and interacts
the line x = aS

m−1 at the point H. According to the qualitative property of system (2.3),

we obtain d S
dt |C H > 0, dx

dt |C H < 0 and d S
dt |H G > 0, dx

dt |H G > 0. The segment C D

interacts the straight line x = m−1
a S at the point E , we have d S

dt |AE > 0, dx
dt |AE < 0,

d S
dt |C E > 0, dx

dt |C E < 0. According to Lemma 2.5, we can obtain that system (2.3)
has an order one periodic solution.

Next we consider Case II.

Theorem 3.2 Suppose that m > 1, h < 1 − a
m+a−1 , SC ≤ ah

m−1 , SD ≤ ah
m−1 and

x(0) < h then system (2.3) has an order one periodic solution.

Proof For Case II, we easily obtain the closed region R1 (see Fig. 5). We extend the
segment C D to interact the segment AE at the point E . Since d S

dt |C E > 0, dx
dt |C E < 0.
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Similar to Case I, the closed region R1 consists of CG, G F, F B, B A, AE, E D, DC .

It follows from Lemma 2.5 that system (2.3) has an order one periodic solution.

Theorem 3.3 Suppose that m > 1, h < 1 − a
m+a−1 , SC ≤ ah

m−1 , SD > SDM and
x(0) < h then system (2.3) has an order one periodic solution.

The proof is similar to Theorem 3.1 and 3.2, we omit it.
Next we give one lemma firstly to discuss the stability of this positive periodic

solution of system (2.3).

Lemma 3.4 The T-periodic solution S(t) = ξ(t), x(t) = η(t) of the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d S
dt = P(S, x),

dx
dt = Q(S, x),

}

φ(S, x) �= 0,

�S = α(S, x),

�x = β(S, x),

}

φ(S, x) = 0,

(3.2)

is orbitally asymptotically stable if the Floquet multiplier µ2 satisfies the condition
|µ2| < 1, where

µ2 = �
q
k=1�k exp

⎡

⎣

T∫

0

(
∂ P

∂S
(ξ(t), η(t)) + ∂ Q

∂x
(ξ(t), η(t))

)

dt

⎤

⎦ , (3.3)

with

�k =
P+

(
∂β
∂y

∂φ
∂x − ∂β

∂x
∂φ
∂y + ∂φ

∂x

)
+ Q+

(
∂α
∂x

∂φ
∂y − ∂α

∂y
∂φ
∂x + ∂φ

∂y

)

P ∂φ
∂x + Q ∂φ

∂y

and P, Q, ∂α
∂x , ∂α

∂y ,
∂β
∂x ,

∂β
∂y ,

∂φ
∂x and ∂φ

∂y are calculated at the point (ξ(τk), η(τk)), P+ =
P(ξ(τ+

k ), η(τ+
k )), Q+ = Q(ξ(τ+

k ), η(τ+
k )). φ(x, y) is a sufficiently smooth function

with gradφ(x, y) �= 0 and τk(k ∈ N ) is the time of kth jump.
The proof of this lemma is referred to [21].
In what follows, we suppose this periodic solution of system (2.3) with period T

passes through the points E+(ξ0(1 − p), (1 − p)h) and (ξ0, h). As the expression
and the period of this solution are unknown, we discuss the stability of this positive
periodic solution by using Lemma 3.4. In our case,

P(S, x) = 1 − S − mSx

ax + S
, Q(S, x) = mSx

ax + S
− x, α(S, x)

= −pS, β(S, x) = −px,

φ(S, x) = x−h, (ξ(T ), η(T )) = (ξ0, h), (ξ(T +), η(T +))= ((1 − p)ξ0, (1 − p)h).

∂ P

∂S
= −1 − max2

(ax + S)2 ,
∂ Q

∂x
= mS2

(ax + S)2 − 1,
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∂α

∂S
= −p,

∂α

∂x
= 0,

∂β

∂S
= 0,

∂β

∂x
= −p,

∂φ

∂S
= 0,

∂φ

∂x
= 1.

�1 =
P+

(
∂β
∂x

∂φ
∂S − ∂β

∂S
∂φ
∂x + ∂φ

∂S

)
+ Q+

(
∂α
∂S

∂φ
∂x − ∂α

∂x
∂φ
∂S + ∂φ

∂x

)

P ∂φ
∂S + Q ∂φ

∂x

= Q+(ξ(T +), η(T +)(1 − p)

Q(ξ(T ), η(T ))

=
(1 − p)2h

(
m(1−p)ξ0

a(1−p)h+(1−p)ξ0
− 1

)

h
(

mξ0
ah+ξ0

− 1
) = (1 − p)2.

Set G(t) = ∂ P
∂S (ξ(t), η(t)) + ∂ Q

∂x (ξ(t), η(t)), then

µ2 = �1 exp

⎛

⎝

T∫

0

(
∂ P

∂S
(ξ(t), η(t)) + ∂ Q

∂x
(ξ(t), η(t))

)

dt

⎞

⎠

= (1 − p)2 exp

⎛

⎝

T∫

0

G(t)dt

⎞

⎠ .

If |µ2| < 1, that is

|(1 − p)2 exp

⎛

⎝

T∫

0

G(t)dt

⎞

⎠ | < 1,

the periodic solution is stable. Thus the result about the existence and stability of this
positive period-1 solution is given in the following:

Theorem 3.5 Suppose that m > 1, h < 1 − a
m+a−1 and x(0) < h then system (2.3)

has an order one periodic solution. Furthermore, this period-1 solution is stable if

|(1 − p)2 exp(
∫ T

0 G(t)dt)| < 1, where G(t) = m(ξ(t)2−aη(t)2)

(aη(t)+ξ(t))2 − 2.

3.2 The existence of order two periodic solution

To discuss the dynamics of system (2.3), we choose two sections X0 = {(S, x)|S ≥
0, x = (1 − p)h} and X1 = {(S, x)|S ≥ 0, x = h} to establish a Poincare map. Sup-
pose the point Bk(Sk, h) is on the Poincare section X1. Then B+

k ((1− p)Sk, (1− p)h)

is on X0 due to impulsive effects, and the trajectory with the initial point B+
k intersects

the Poincare section X1 at the point Bk+1 = (Sk+1, h), where Sk+1 is decided by Sk

and the parameter p. We get the following Poincare map

Sk+1 = F(p, Sk). (3.4)
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From the dependence of the solutions on the initial conditions, the function is
continuous on p and Sk . For each fixed point of the Poincare map, there is an associ-
ated periodic solution of system (2.3), and vice versa.

From Theorem 3.1 to Theorem 3.4, we know that system (2.3) has an order one
periodic solution. In this section, we will discuss order two periodic solution.

Suppose that (S̃(t), x̃(t)) is a periodic solution of system (2.3), then (S̃′
0, (1−p)h) ∈

N ⊆ C D and (S̃0, h) ∈ M ⊆ AB. It is easily obtained that S̃′
0 < S̃0 due to the impul-

sive effect.
Let (S′

0, x ′
0) ∈ N ⊆ C D and (S0, x0) ∈ M ⊆ AB. It is also easily obtained that

S′
0 < S0 since S(t+) = (1− p)S(t) by third equation of system (2.3). Here, we denote

the arbitrary solution of system (2.3) by (S(t), x(t)). The second interaction point of
the trajectory and set M(x = h) is denoted as the point (S1, h). After a series of
impulse, the corresponding interaction points of trajectory and set M are (Si , h), i =
3, 4, . . . . From the Poincare map (3.4), we have S1 = F(p, S0), S2 = F(p, S1) and
Sn+1 = F(p, Sn)(n = 3, 4, . . .).

By the qualitative analysis of system (2.3), we know that dx
dt < 0 for the region

(S, x) ∈ AO I A and dx
dt > 0 for the region (S, x) ∈ AB F O A (see Fig. 4). So we

consider the following cases:

Case 1 If the periodic solution is in the region AB F O A. The trajectory starting from
the point (S′

0, (1 − p)h) will interact the segment AB at the point (S0, h) and then
jumps to (S+

0 , (1 − p)h). The trajectory starting from the point ((S+
0 , (1 − p)h)) will

interact the segment AB at the point (S1, h). The trajectory starting from the point
(S+

1 , (1 − p)h) will again interact the segment at the point (S2, h) and so on. With-
out loss of generality, we suppose that S0 < S̃0. By the qualitative property of the
system (2.3) in the region AB F O A, one and only one of the following sequences
holds:

(A):

S0 ≤ S1 ≤ S2 ≤ S3 ≤ · · · ≤ S̃0,

(B):

S̃0 ≥ S0 ≥ S1 ≥ S2 ≥ S3 ≥ · · · .

It is known that the sequences the trajectories tend to be periodic since the sequences
are monotone and ultimately bounded. It follows by Definition 2.4 that order two
periodic solution does not exist in this case.

Case 2 If the periodic solution is in the region AO I A (see Fig. 4), then we have
dx
dt < 0. For any two points Bm(Sm, h) and B j (S j , h) in the region AO I A, where
Sm < S j . We have S+

m = (1 − p)Sm and S+
j = (1 − p)S j due to impulsive effect.

Then it follows from the vector field of system (2.3) that 0 < S j+1 < Sm+1 < 1,

that is

0 < S j+1 < Sm+1 < 1 for 0 < Sm < S j < 1. (3.5)
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From the poincare map (3.4) we have S1 = F(p, S0), S2 = F(p, S1), and Sn+1 =
F(p, Sn)(n = 3, 4 . . .).

1. If S0 = S1, then system (2.3) has a positive period-1 solution;
2. If S0 �= S1, without loss of generality, suppose that S1 < S0. It follows from (3.5)

that S2 > S1. Furthermore, if S2 = S0, then system (2.3) has a positive period-2
solution.

3. If S0 �= S1 �= S2 �= S3 �= · · · Sk−1(k ≥ 3) and S0 = Sk, then system (2.3) has a
positive period-k solution. In fact, this is impossible. If S0 < S1 then from (3.5),
we have S1 > S2 and then S2 < S0 < S1 or S0 < S2 < S1. If S0 > S1, then
from (3.5), we have S1 < S2 and then S1 < S2 < S0 or S1 < S0 < S2. So the
relation of S0, S1 and S2 is one the following:

S2 < S0 < S1, S0 < S2 < S1, S1 < S2 < S0, S1 < S0 < S2.

(i) S2 < S0 < S1
If S2 < S0 < S1 holds, then from (3.5), we have S3 > S1 > S2. It is also
true that S3 > S1 > S0 > S2. We again obtain S4 < S2 < S1 < S3 and then
S4 < S2 < S0 < S1 < S3. By means of induction, we have

0 < · · · < S2k < · · · S4 < S2 < S0 < S1 < S3 < S5

< · · · < · · · < S2k+1 < · · · < 1. (3.6)

Similar to (i), we have
(ii) S0 < S2 < S1

0 < S0 < S2 < S4 < · · · < S2k < · · · < S2k+1 < · · · < S5

< S3 < S1 < 1. (3.7)

(iii) S1 < S2 < S0

0 < S1 < S3 < S5 < · · · < S2k+1 < · · · < S2k < · · · < S4 < S2

< S0 < 1. (3.8)

(iv) S1 < S0 < S2

0 < · · · < S2k+1 < · · · < S5 < S3 < S1 < S0 < S2 < S4 < · · · < S2k

< · · · < 1. (3.9)

If there exists a period-k solution (k ≥ 3) in system (2.3), then we have

S0 �= S1 �= S2 �= S3 �= · · · Sk−1, Sk = S0,

which is a contradiction to (3.6)–(3.9). So there exists no period-k solution (k ≥ 3)
in system (2.3). In fact, there exists stable period-1 or period-2 solution in this case.
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Fig. 7 The time series and portrait phase of the order one periodic solution with the parameters a = 1, m =
5, p = 0.8, h = 1.6, S(0) = 0.2, x(0) = 0.4

Fig. 8 The time series and portrait phase of the order two periodic solution with the parameters a = 2, m =
6, p = 0.8, h = 0.8, S(0) = 0.2, x(0) = 0.6

It follows from (3.6) that limn→∞ S2k = S∗
0 and limn→∞ S2k+1 = S∗

1 , where 0 <

S∗
0 < S∗

1 < 1. Thus S∗
1 = F(p, S∗

0 ) and S∗
0 = F(p, S∗

1 ). So system (2.3) has a stable
period-2 solution in the case (i). Similarly, we obtain that system (2.3) has a stable
period-1 solution in the case (ii) and (iii) and has a period-2 solution in the case (iv)

4 Discussion

End product inhibition such as L-Latic acid bacteria and ethanol producing bacteria
is widely acknowledged in all enzymatic reactions. Therefore, there is a strong eco-
nomic incentive to develop efficient control strategies that would enable rapid startup
and stabilization of steady states in the bioreactors subject to the inhibition of the
concentration.

In this paper, we have investigated the existence of order one and order two periodic
solutions in a turbidostat model with the impulsive stat feedback control. By using
the analogue of Poincare criterion and the Poincare map, we have proved the stabil-
ity of order one periodic solution, which is simulated in Fig. 7, where a = 1, m =
5, p = 0.8, h = 1.6, S(0) = 0.2, x(0) = 0.4. At the same time, we also obtain the
existence of the order two periodic solution, which is demonstrated in Fig. 8, where
a = 2, m = 6, p = 0.8, h = 0.8, S(0) = 0.2, x(0) = 0.6. Now we can give an the-
oretic analysis on the inhibition of the microorganism concentration. We suppose the
predetermined inhibition value of microorganism concentration is 0.8. From Fig. 9b,
we know that the microorganism product will ultimately reach the critical value 0.8
and will not again increase even if the substrate concentration is added into the culture
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Fig. 9 The phase portrait of the periodic solution. a Time-series of the substrate S of system (3.1) with
the parameters a = 2, m = 6, p = 0, S(0) = 0.2, x(0) = 0.6. b Time-series of the microorganism x of
system (3.1) with the parameters a = 2, m = 6, p = 0, S(0) = 0.2, x(0) = 0.6. c The phase portrait of
the periodic solution of the impulsive state feedback control of the corresponding system (3.1) with the
parameters a = 2, m = 6, p = 0.8, h = 0.8

vessel, which implies the microorganism concentration has a great inhibition on the
product. In Fig. 9c, when the microorganism concentration reaches some predeter-
mined point h = 0.8, fresh water is added to the culture and an equal volume is
removed so that the microorganism concentration is under the predetermined point,
therefore we obtain an order two periodic solution.
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